
Flexible Locomotion Learning with Diffusion Model Predictive Control

Runhan Huang‡, Haldun Balim‡, Heng Yang‡, Yilun Du‡†
Flexible-Diffusion-MPC.github.io/

Original Joint Constraint

Height Reward Lift Reward

Fig. 1: Flexible Adaptation of Locomotion Policies. Our learned model predictive control procedure allows the quadruped to flexibly
adapt its behavior at test time to new joint constraints, heights, and terrains.

Abstract— Legged locomotion demands controllers that are
both robust and adaptable, while remaining compatible with
task and safety considerations. However, model-free reinforce-
ment learning (RL) methods often yield a fixed policy that can
be difficult to adapt to new behaviors at test time. In contrast,
Model Predictive Control (MPC) provides a natural approach to
flexible behavior synthesis by incorporating different objectives
and constraints directly into its optimization process. However,
classical MPC relies on accurate dynamics models, which are
often difficult to obtain in complex environments and typically
require simplifying assumptions. We present Diffusion-MPC,
which leverages a learned generative diffusion model as an
approximate dynamics prior for planning, enabling flexible test-
time adaptation through reward and constraint based optimiza-
tion. Diffusion-MPC jointly predicts future states and actions;
at each reverse step, we incorporate reward planning and
impose constraint projection, yielding trajectories that satisfy
task objectives while remaining within physical limits. To obtain
a planning model that adapts beyond imitation pretraining,
we introduce an interactive training algorithm for diffusion
based planner: we execute our reward-and-constraint planner in
environment, then filter and reweight the collected trajectories by
their realized returns before updating the denoiser. Our design
enables strong test-time adaptability, allowing the planner to
adjust to new reward specifications without retraining. We
validate Diffusion-MPC on real world, demonstrating strong
locomotion and flexible adaptation.

I. INTRODUCTION
Legged locomotion remains a significant challenge in

robotics, as controllers must guarantee stability under com-
plex contact-rich dynamics [1], [2] while accommodating
evolving task requirements. A generalized controller de-
mands the synthesis of diverse behaviors—ranging from pos-
ture adjustment [3], [4] and balancing [5] to energy-efficient
walking [6]. This notion of flexible behavior synthesis [7]
is central to enabling robots to operate autonomously in
unpredictable environments. Rather than being limited to a

‡Kempner Institute, Harvard University, MA, USA
† Corresponding at: ydu@seas.harvard.edu

single, pre-defined policy, a capable locomotion controller
should be able to integrate new constraints, and adapt to
novel objectives on the fly [7]. Such flexibility is especially
critical at test time, where robots may face new terrains,
altered physical limits, or modified task goals, which can not
be anticipated during training or even design phase. Meeting
this demand requires not only robustness to disturbances
but also rapid test-time adaptation—the ability to reshape
trajectories in real time.

Building toward this vision, the field has converged on
two main solutions to locomotion control. Model predic-
tive control [8] offers a natural mechanism for adaptation
by explicitly encoding objectives and constraints into an
optimization-based control framework. However, MPC de-
pends on highly accurate dynamics models, incurs signif-
icant computational cost in contact-rich settings, and in
practice often requires extensive simplifications and hand-
crafted design choices [9], [10]. By contrast, model-free
reinforcement learning [11], [12] has achieved impressive
results for behaviors [1], [3], [13], producing robust policies
that can transfer from simulation to hardware; yet these
methods typically learn a fixed policy network, making it
difficult to flexibly synthesize multiple behaviors at test time
and thus most successful in relatively static tasks. Together,
these limitations highlight the gap between RL’s efficiency
and MPC’s flexibility, motivating approaches that combine
their respective strengths.

We address this gap by introducing Diffusion-MPC,
which leverages generative diffusion models [7], [14]–[16]
as expressive learned priors, enabling them to function as
planners that implicitly capture system dynamics. Rather
than directly fitting an action only policy, our diffusion
model learns to jointly represent state transitions and action
proposals from large, heterogeneous datasets. This learned
generative prior then plays the role of the planner in an
MPC framework: during each planning cycle, trajectories

https://Flexible-Diffusion-MPC.github.io/

are sampled from the diffusion model and optimized with
reward terms and constraints, effectively performing model-
based planning without reliance on hand-crafted dynamics.
In this view, diffusion models are not just conditional genera-
tors, but expressive approximators of environment dynamics
that make tractable, flexible MPC possible. Reward-based
planning updates steer generated trajectories toward task
objectives, while feasibility is maintained through constraint
projection. Candidate ranking is then applied to further
refine the selected plan. Together, these mechanisms provide
adaptability while avoiding the need for simplified model
designs required by MPC and the rigidity of fixed RL
policies. In addition, the framework naturally supports skill
compositionality: multiple reward and constraint terms can
be combined at test time to synthesize behaviors without
retraining.

Directly training a diffusion planner on demonstrations,
however, often fails to meet deployment requirements. In
practice, datasets not only may lack coverage of critical
objectives such as energy efficiency or smoothness, but may
also suffer from limited quality or inconsistencies, since
there is rarely access to a true expert capable of providing
optimal demonstrations [17]. Furthermore, demonstrations
are typically collected in simulation under simplified physics,
whereas deployment occurs in the real world where condi-
tions such as terrain inclination, contact friction, and unmod-
eled disturbances differ substantially [1]. As a result, purely
imitative rollouts may drift off-distribution during real [18].
To address this, we introduce an interactive online training
procedure for diffusion based planners: the diffusion planner
is rolled out interactively to collect trajectories, and the
model is updated using trajectories filtered and reweighted
by realized returns, in the spirit of reward-weighted regres-
sion [19]–[22]. This adaptation both enhances robustness and
improves alignment with task objectives, while preserving
the compositional interface for flexible test-time control.

In summary, to tackle the challenge of achieving flexible
and adaptable locomotion, we propose a novel framework
that makes the following key contributions:
• Diffusion-MPC Formulation. We reinterpret diffusion

models as generative priors for model predictive control
via reward-based updates, constraint projection, and
candidate ranking.

• Interactive Training. We propose a reward-weighted
denoising adaptation procedure that finetunes the dif-
fusion planner during interaction with the environment,
enhancing locomotion capability.

• Real-World Deployment. We design practical tech-
niques for real-time diffusion planning, including asyn-
chronous execution and early-step caching, and demon-
strate zero-shot transfer on a Unitree Go2 quadruped.

II. RELATED WORKS

A. Learning-Based Locomotion

Two main paradigms dominate locomotion control: model
predictive control and reinforcement learning. MPC ap-

proaches for legged locomotion [9], [10] optimize trajecto-
ries with explicit costs and constraints, enabling agile and
versatile maneuvers. However, these methods typically rely on
simplified dynamics models, which limits accuracy in contact-
rich locomotion and makes them computationally demanding,
often necessitating substantial modeling simplifications. By
contrast, model-free RL [11], [12] has achieved impressive
results through massively parallel simulation training [23]–
[25]. The learned policies was successfully deployed in
different scenarios, including traversing complex terrains [1],
[26]–[29], achieving extreme motions [5], [13], [30]–[34], and
interactively navigate in the real world [35]–[38]. Yet policies
learned via model-free RL are tightly coupled to their training
reward functions, confining them to predefined behaviors and
hindering adaptation to novel test-time objectives. Hence the
generalizability and adaptability of RL is not desirable for
flexible behavior synthesis. Works such as [3] further shows
that reinforcement learning can endow a single policy with a
family of behaviors and interpolate between them. However,
the set of behaviors must be predefined through task-specific
reward design and integrate into network input during training,
limiting flexibility when new objectives arise at deployment.
Building on the powerful expressiveness of generative mod-
els [14], [16], recent approaches [7], [39] have explored their
use as planners that capture system dynamics implicitly. In this
view, diffusion models provide a learned generative prior over
trajectories, which can then be steered by reward terms and
constraints at test time to enable flexible adaptation.

B. Diffusion for Control
Diffusion models [14], [40]–[43] have recently been ex-

plored as generative frameworks for decision making [7],
[39], [44]–[51]. Recently, there have been approaches to
leverage the expressiveness of diffusion in locomotion control.
[18] use diffusion policy as action generator to learn from
large corpus of demonstrations. [52] adopt a classifier free
guidance with return on the diffusion policy to control the
robot toward different behavior, but still have to predefine
one-hot skill vectors as network input and incorporate pre-
defined return in training time, which limits the adaptability
and flexibility of behavior. [53] has shown that diffusion
models can serve as generative priors for planning, but
the framework focused on relatively simple planning and
was evaluated in simulation. Compared to the action-only
diffusion motion generation [18], [52], we incorporate implicit
dynamics modeling through modeling state-action distribution
and conduct planning during deployment, enabling flexible
behavior at test-time.

III. PROBLEM SETUP AND BACKGROUND
We consider a discrete-time dynamical system

𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡),

where 𝑠𝑡 ∈ R𝑛𝑠 denotes the state and 𝑎𝑡 ∈ R𝑛𝑎 the control input
at time 𝑡. The objective is to maximize a cumulative reward
𝑟 (𝑠𝑡 , 𝑎𝑡) while ensuring that the trajectories satisfy constraints
(𝑠𝑡 , 𝑎𝑡) ∈ C.

Since optimizing over long horizons is typically computa-
tionally prohibitive, MPC [8] instead considers a finite and
tractable horizon of length 𝐻. At each time step, MPC plans
over this horizon by solving

max
𝑎𝑡:𝑡+𝐻−1|𝑡

𝐻−1∑︁
𝑖=0

𝑟 (𝑠𝑡+𝑖 |𝑡 , 𝑎𝑡+𝑖 |𝑡)

subject to the dynamics constraint 𝑠𝑡+𝑖+1 |𝑡 = 𝑓 (𝑠𝑡+𝑖 |𝑡 , 𝑎𝑡+𝑖 |𝑡)
and the constraint (𝑠𝑡+𝑖 |𝑡 , 𝑎𝑡+𝑖 |𝑡) ∈ C for 𝑖 = 0, . . . , 𝐻−1, start-
ing from the current state 𝑠𝑡 . After solving this optimization,
only the first action 𝑎𝑡 |𝑡 is applied, and the problem is re-solved
at the next step in a receding-horizon fashion.

While classical MPC frameworks rely on solving an opti-
mization problem at each step, a recently popular alternative
is to cast planning as a conditional generation problem [7],
[44]. Concretely, we consider that we have access to a
trajectory dataset D = {𝜉𝑖}𝑁𝑖=1, 𝜉𝑖 = {(𝑠𝑖𝑡 , 𝑎𝑖𝑡)}𝑇𝑡=0, collected
from diverse policies that are not necessarily optimal nor
guaranteed to satisfy the constraints in C. From this dataset, we
learn a generative model that samples state–action sequences
of horizon 𝐻:

𝜏 =

[
𝑠𝑡 𝑠𝑡+1 · · · 𝑠𝑡+𝐻
𝑎𝑡 𝑎𝑡+1 · · · 𝑎𝑡+𝐻

]
, 𝜏 ∈ R(𝑛𝑠+𝑛𝑎)×𝐻 ,

aimed at maximizing rewards while respecting constraints. Un-
like optimization-based MPC, this sampling-based approach
learns a generative prior over trajectories, allowing rewards
and constraints to be incorporated directly during sampling.

Trajectory diffusion. Diffusion models [40] provide a
flexible generative framework by gradually perturbing data
with noise and learning a reverse denoising process to recover
structured samples. Beyond image and signal domains, they
have also been successfully applied to trajectory modeling and
control [7], [44]. Motivated by these successes, we employ
diffusion models to learn a generative prior over trajectories.
Specifically, we consider a data-generating process:

𝑞

(
𝜏 (𝑘) | 𝜏 (𝑘−1)

)
=N

(√
𝛼𝑘 𝜏

(𝑘−1) , (1−𝛼𝑘) I
)
,

and a learned reverse process:

𝑝𝜃

(
𝜏 (𝑘−1) | 𝜏 (𝑘)

)
=N

(
𝜇𝜃 (𝜏 (𝑘) , 𝑘), Σ𝑘

)
,

with a pre-defined variance schedule {𝛼}𝐾
𝑘=0 ∈ (0,1] and a

neural network 𝜇𝜃 . To learn the parameters 𝜃, we use the
denoising objective [14]:

L(𝜃) = E𝜏,𝑘, 𝜖

𝜏− 𝜏𝜃 (𝜏 (𝑘) , 𝑘)

2

,

where 𝜏 (𝑘) is obtained from the forward noising process and
𝜖 ∼ N(0, 𝐼).

IV. METHOD

A. Flexible Behavior Synthesis Through Sampling.

In this section, we present our methodology for synthesizing
reward-maximizing, constraint-satisfying trajectories using
our learned generative prior. Given a differentiable trajectory-
level reward function 𝑅(𝜏), we define the distribution of

desired trajectories as

𝜋(𝜏) ∝ 𝑝 𝜃 (𝜏) exp
(
𝜆𝑅(𝜏)

)
1{𝜏 ∈ C},

where 𝑝𝜃 (𝜏) is the learned generative prior by our diffusion
model, 𝜆 ≥ 0 controls the strength of planning, and 1{𝜏 ∈ C}
enforces constraints.

To sample from 𝜋, we tilt the diffusion prior 𝑝𝜃 (𝜏)
using reward-based planning, following the reward planning
approach of [7]. After each reverse step, we apply a reward
planning update:

𝜏 (𝑘−1) ≔ 𝜏 (𝑘−1) +𝜂𝑘 Σ𝑘 ∇𝜏𝑅
(
𝜏 (𝑘−1)) ,

where Σ𝑘 is the covariance of the reverse transition and 𝜂𝑘
controls the strength of planning.

For the trajectory-level reward 𝑅(𝜏), we combine two
complementary signals: a learned neural component 𝑅nn that
captures long-horizon semantic behaviors difficult to formalize
analytically, and an analytic component 𝑅an that encodes hand-
specified objectives.

𝑅(𝜏) = 𝛼nn𝑅nn (𝜏) +𝛼an𝑅an (𝜏).

This combination offers flexibility: neural rewards provide
expressive, data-driven semantics, while analytic rewards
enable direct incorporation of task-specific structure. Together,
they allow planning to balance learned behavior with explicitly
defined objectives.

To ensure constraint, we project the denoised sample onto
the feasible set after each step in reverse chain:

𝜏 (𝑘−1) ≔ΠC
(
𝜏 (𝑘−1)

)
,

where ΠC denotes the projection operator onto C. This
mechanism provides a flexible way to enforce constraint,
ensuring that sampled trajectories remain valid while still
allowing diverse behaviors to emerge.

The overall sampling procedure is shown in Algorithm 1.
Starting from Gaussian noise, the reverse process iteratively
refines a candidate trajectory. At each step, we incorporate
reward functions to plan the trajectory distribution toward
high-reward behaviors and enforce constraint through projec-
tion. The initial state is fixed throughout the process to ensure
consistency with the current observation. This combination
of denoising and planning yields state–action trajectories that
both adhere to constraints and flexibly adapt to task objectives.

In addition to reward-based planning and constraint injec-
tion, we employ a candidate ranking strategy: multiple trajecto-
ries are sampled from the diffusion planning process, scored by
the reward, and the best one selected. This complements local
gradient updates by improving robustness through exploration
of diverse rollouts. This global selection complements local
gradient planning: while gradient steps provide fine-grained
planning, candidate ranking improves robustness by exploring
diverse rollouts and mitigating noisy gradients planning.

Compared with action-only diffusion approaches [39] that
rely on separately conditioned dynamics models [53], our joint
state–action formulation provides a unified representation of
trajectories and controls. By generating states and actions to-

Algorithm 1 Diffusion-MPC Sampling
Require: diffusion model 𝜇𝜃 , reward planning scale𝜆, reward

function 𝑅(𝜏), constraint set C, initial state 𝑠0, number of
candidates 𝑁

1: All updates below are applied in parallel to the 𝑁

candidates.
2: initialize 𝜏𝐾 ∼N(0, 𝐼) with batch size 𝑁; set first state
𝜏𝐾𝑠0← 𝑠0

3: for 𝑘 = 𝐾, . . . ,1 do
4: 𝜏𝑘−1←𝜇𝜃 (𝜏𝑘 , 𝑘) +𝜎𝑘𝜖𝑘 , 𝜖𝑘 ∼N(0, 𝐼) ⊲ reverse step
5: 𝜏𝑘−1←𝜏𝑘−1+𝜆Σ𝑘 ∇𝜏𝑅(𝜏𝑘−1) ⊲ reward planning
6: 𝜏𝑘−1←ΠC

(
𝜏𝑘−1) ⊲ constraint projection

7: 𝜏𝑘−1
𝑠0 ← 𝑠0 ⊲ enforce initial state

8: end for
9: 𝜏★ = argmax𝜏∈{𝜏0

𝑖
} 𝑅(𝜏) ⊲ ranking across N candidates

gether, the diffusion prior naturally respects system dynamics,
eliminating the need for an explicit dynamics model. More-
over, this formulation enables reward shaping and constraint
injection to act directly on the evolving state sequence at
every denoising step, rather than only through actions. This
joint perspective increases flexibility in incorporating task
objectives and feasibility constraints.

B. Compositional Behavior Synthesis
Beyond planning with a single reward function, our frame-

work also supports flexible skill composition through reward
combination. Let {𝑅𝑖 (𝜏)}𝐾𝑖=1 denote a set of scalar task re-
wards, which may be either neural or analytic. At deployment,
the user specifies weights𝛼 ∈R𝐾 to form a composite objective

𝑅𝛼 (𝜏) =
𝐾∑︁
𝑖=1
𝛼𝑖 𝑅𝑖 (𝜏).

By varying the weights 𝛼𝑖 , Diffusion MPC can seamlessly
trade off between different objectives, synthesizing a diverse
range of behaviors. This includes not only behaviors repre-
sented in the dataset but also novel behaviors arising from new
combinations of reward signals.

C. Planner Learning with Environment Interaction
We propose a strategy to collect data and finetune the

diffusion prior using trajectories generated by our model in
an online interactive way. Let (𝜏 (𝑘) , 𝑘, 𝜖) denote a standard
denoising tuple constructed from a clean trajectory 𝜏 with
forward noise 𝜖 ∼ N(0, 𝐼). Per-trajectory weights are defined
from realized returns as

𝑤(𝑅𝑟 (𝜏)) = exp
(
𝑅𝑟 (𝜏)
𝑇

)
,

with 𝑇 > 0 as a temperature parameter. Here 𝑅𝑟 denotes the
ground-truth return from the environment, analogous to the RL
setting, rather than the reward model used during planning. To
filter out low-return rollouts, we retain only the top-𝐾 weights
and set the rest to zero:

𝑤′ (𝜏) =
{
𝑤(𝑅𝑟 (𝜏)), 𝜏 ∈ Top-𝐾,
0, otherwise.

𝑤̄(𝜏) = 𝑤′ (𝜏)
E[𝑤′ (𝜏)] .

The resulting objective is

LRWD (𝜃) = E
[
𝑤̄(𝑅𝑟 (𝜏))

𝜏− 𝜏𝜃 (𝜏 (𝑘) , 𝑘)

2
2

]
.

which performs exponentially tilted regression, biasing up-
dates toward higher-return trajectories. A replay buffer is
maintained that interleaves on-policy planner rollouts with
previously collected trajectories, preserving the coverage of
prior experiences while nudging the model toward reward-
favored regions of the trajectory space.

Compared with standard policy-gradient methods, reward-
weighted denoising has several advantages for diffusion
planners: (i) it remains in the native denoising parameter-
ization, avoiding high-variance policy gradients and critic
bootstrapping; (ii) it is naturally off-policy and sample-
efficient—filter and reweight can exploit stored trajectories
without importance-correction instabilities; (iii) it is flexible
to explicitly plan into several behavior in the sampling phase,
giving strong guidance during the rollout. In practice, this
yields a stable online procedure that trains a planner flexibly
while preserving the benefits of the learned generative prior.
D. Real-time Planning

Asynchronous planning for real-time control. To meet
high-rate locomotion requirements, we employ an asyn-
chronous pipeline with planning horizon 𝐻 and replan margin
𝐷. At each timestep 𝑡, the controller executes the next action
from the current 𝐻-step plan 𝑎𝑡:𝑡+𝐻−1. When the execution
index reaches 𝐻−𝐷, we trigger replanning from the latest
observation to synthesize a fresh 𝐻-step plan while continuing
to execute the remaining 𝐷 buffered actions from the old plan.
Once these 𝐷 actions have been applied, we time-align the
new plan by skipping its first 𝐷 actions and begin execution at
offset 𝐷. Equivalently, each action is computed 𝐷 control
cycles before it is applied (a 𝐷-step action buffer), which
maintains real-time operation while preserving closed-loop
feedback with period 𝐻−𝐷 steps. In our experiments, we set
𝐻=11 and 𝐷=3.

Caching early denoising. Successive plans generated by
our model often produce nearly identical trajectories in early
diffusion steps, as these steps primarily denoise without
incorporating task-specific structure. To avoid redundant com-
putation, we shift the existing plan across time steps and
reuse it as the initialization for the next window, up to 𝑚

steps. This warm-start strategy preserves solution quality while
substantially reducing inference cost.

Sampler choice and step budget. DDIM offers faster,
deterministic sampling at some cost in fidelity, while DDPM
is slower but higher quality. The number of denoising steps
controls the compute–quality trade-off. We use 10 DDPM
steps at inference and ablate both the training horizon and
test-time step count.

V. EXPERIMENTS: DESIGN AND SETUP
A. Experiment Setup

For adaptation tasks, we consider locomotion tasks with
objectives: base height variation, joint limit restriction, energy

saving, joint acceleration/velocity regularization, and balanc-
ing. We use Isaacgym [23] as our simulator for pretrain dataset
collection and interactive training. The planners are initialized
with dataset collected with domain randomization. Our in-
teractive diffusion planner training in VI-B.3 is conducted
on a single NVIDIA 3090 GPU, with 4096 environments
in simulation. The control frequency in both the simulation
environment and the real world is 50Hz. Our policy is deployed
on a Unitree Go2 quadrupedal robot, with an Intel NUC
12 PRO as onboard computing device. We use PD control
for low-level joint torques (𝐾𝑝 = 40.0,𝐾𝑑 = 1.0). The robot
observation at time 𝑡 is represented as

𝑜𝑡 = { 𝑣yaw
𝑡 , 𝑔𝑡 , 𝑣

cmd
𝑡 , 𝑞𝑡 , ¤𝑞𝑡 , 𝑎𝑡−1 },

where 𝑣yaw
𝑡 is the base angular velocity, 𝑔𝑡 is the projected

gravity, 𝑣cmd
𝑡 is the command vector, 𝑞𝑡 and ¤𝑞𝑡 are the joint

position and velocity, and 𝑎𝑡−1 is the previous action.
B. Adaptation Task Definition

1) Base Height Variation: Base height is not included in
the observation. We therefore use a trajectory-level reward
model

𝑅height (𝜏; ℎ★) = 𝑓𝜙
(
𝜏 (𝑘) , 𝑡

)
,

where a U-Net takes a corrupted joint state–action segment
𝜏 (𝑘) and diffusion step 𝑡 and predicts the reward of the
corresponding clean trajectory; at test time, ℎ★ denotes the
desired height profile implicit in the query. In our setting, we
set ℎ★ = 0.15 m.

2) Joint Limit Restriction: We consider (i) attraction to a
target posture 𝑞tar via an analytic term

𝑅posture (𝜏) = −
1
𝐻

𝐻−1∑︁
𝑡=0
∥𝑞𝑡 − 𝑞tar∥22,

and (ii) a tightened range 𝑞min≤ 𝑞𝑡 ≤ 𝑞max enforced by reward

𝑅range (𝜏) = −
1
𝐻

𝐻−1∑︁
𝑡=0

(

[𝑞𝑡 − 𝑞max]+

2

2+

[𝑞min− 𝑞𝑡]+

2
2

)
and also projection

𝑞𝑡 ← Π[𝑞min , 𝑞max] (𝑞𝑡).

where [𝑢]+ = max(𝑢,0) and Π[𝑎,𝑏] (𝑞) = min(max(𝑞, 𝑎), 𝑏)
acts elementwise.

3) Energy Saving: We train a reward model 𝑅energy (𝜏) =
𝑓𝜓 (𝜏) to predict energy cost and plan accordingly. The reward
is calculated by the time-integrated mechanical power

𝑅energy (𝜏) = −
𝐻−1∑︁
𝑡=0

𝑑𝑢∑︁
𝑗=1

��𝜏𝑗 ,𝑡 ¤𝑞 𝑗 ,𝑡 ��Δ𝑡,
with joint torque 𝜏𝑗 ,𝑡 and velocity ¤𝑞 𝑗 ,𝑡 .

4) Joint Acceleration / Velocity Regularization: We pe-
nalize high rates with analytic terms

𝑅vel/acc (𝜏) = −𝜆𝑣
𝐻−1∑︁
𝑡=0
∥ ¤𝑞𝑡 ∥22 − 𝜆𝑎

𝐻−1∑︁
𝑡=1

 ¤𝑞𝑡 − ¤𝑞𝑡−1
Δ𝑡

2

2
,

and enforce rate limits by projection ¤𝑞𝑡←Π[− ¤𝑞max , ¤𝑞max] (¤𝑞𝑡).

5) Balancing: We align the gravity direction measured in
the body frame with a desired unit direction. Let 𝑔𝑏 (𝑠𝑡) be
the gravity vector expressed in the body frame (available from
IMU/state), and define the unit vector 𝑔̂𝑡 = 𝑔𝑏 (𝑠𝑡)/∥𝑔𝑏 (𝑠𝑡)∥2.
Let 𝑑𝑡 be the desired unit gravity direction (for level posture,
𝑑𝑡 = [0,0,−1]⊤). We use

𝑅align (𝜏) = −
1
𝐻

𝐻−1∑︁
𝑡=0

(
1− 𝑔̂⊤𝑡 𝑑𝑡

)
,

𝑅smooth (𝜏) = −𝜆tv

𝐻−1∑︁
𝑡=1
∥𝑔̂𝑡 − 𝑔̂𝑡−1∥1,

𝑅balance (𝜏) = 𝑅align (𝜏) +𝑅smooth (𝜏).

C. Learning the Planner
Our training follows a two-stage procedure. In the first

stage, we pretrain the planner on 4,000 trajectories of length
1,000, collected from a demonstrator policy trained with PPO.
The demonstration data is collected in a static environment
which is not sufficiently representative for robust deployment.
To address this, we finetune the planner as described in
Sec. IV-C, using 1500 additional environment interactions
for each environments. During this stage, we apply domain
randomization with the parameters detailed in Tab. I.

Parameters Range Unit

Base mass [1, 3] 𝑘𝑔

Mass position of X axis [-0.2, 0.2] 𝑚

Mass position of Y axis [-0.1, 0.1] 𝑚

Mass position of Z axis [-0.05, 0.05] 𝑚

Friction [0, 2] -
Initial joint positions [0.5, 1.5] × nominal value 𝑟𝑎𝑑

Motor strength [0.9, 1.1] × nominal value -
Proprioception latency [0.005, 0.045] 𝑠

TABLE I: Domain Randomization The parameters used for do-
main randomization during finetuning phase.

VI. EXPERIMENTS: RESULTS

A. Simulation Experiments
1) Adaptation Tasks: The adaptation capability of

Diffusion-MPC is assessed across a range of objectives using
1,000 environments over 3,000 simulation steps, with the
average penalty reported as the evaluation metric. The study
systematically varies the number of candidate trajectories
together with the inclusion of reward-based planning and
constraint projection to examine their individual and combined
contributions. Joint Pos (N) refers to tasks with negative rear-
leg joint position targets, while Joint Pos (P) corresponds to
positive targets. To ensure fair assessment, both linear and
angular velocity tracking are maintained within 97 percent
of the baseline policy without planning, preventing excessive
trade-off between task adaptation and nominal locomotion
quality. Tracking performance is quantified using an expo-
nential error metric, where the squared difference between
commanded and realized velocities is penalized and mapped
through exp(−∥𝑒∥2/𝜎), yielding values close to one for
accurate tracking and approaching zero otherwise.

Objectives Penalty ↓
Diffusion Policy C1 R✗ C✗ C10 R✗ C✗ C100 R✗ C✗ C1 R✓ C✗ C10 R✓ C✗ C100 R✓ C✗ C1 R✗ C✓

Joint Vel 0.969 0.973 0.752 0.743 0.762 0.697 0.684 0.553

Joint Acc 0.350 0.349 0.263 0.254 0.267 0.259 0.249 0.262

Joint Pos (N) 0.051 0.484 0.348 0.343 0.296 0.317 0.307 0.183

Joint Pos (P) 0.243 0.240 0.238 0.237 0.209 0.208 0.204 0.168

Balancing 0.807 0.768 0.663 0.650 0.562 0.564 0.551 0.662

Energy 0.774 0.825 0.664 0.626 0.519 0.498 0.482 0.700

TABLE II: Adaptation Performance of Diffusion-MPC Planner. Metrics report penalties for different task components, with each penalty
type scaled independently for clarity. Smaller penalties indicate closer adherence to the desired behavior. Results are shown as a function of
candidate number (Cand), reward-based planning (R), and constraint enforcement (C). For example, C10 R✓ C✗ indicates 10 candidates,
reward-based planning enabled, and constraints disabled.

Goal (Task) Metric finetuned w/o finetuning

0.5 m/s Forward Stability (%) 99.7 46.6
𝐸𝑣 (%) 29.6 51.4

0.7 m/s Forward Stability (%) 90.5 23.1
𝐸𝑣 (%) 28.5 77.0

1.0 m/s Forward Stability (%) 98.8 18.4
𝐸𝑣 (%) 29.1 74.8

TABLE III: Effectiveness of Finetuning. Results show stability
(percentage of successful runs) and average velocity deviation (𝐸𝑣)
across different commanded forward speeds.

Table II demonstrates the adaptation ability of Diffusion-
MPC across variations in candidate number, reward planning,
and constraint planning. All values are normalized penalties,
with less penalty denoting better alignment to desired behav-
iors. Increasing the candidate number consistently improves
performance by enabling more diverse trajectory proposals.
Reward planning further reduces penalties across all task cat-
egories, demonstrating that reward planning provides broadly
beneficial trajectory shaping beyond candidate diversity. Con-
straint projection is most critical for feasibility-dominated
tasks such as joint position adaptation, directly enforcing safe
joint configurations. The penalty remains nonzero not due to
failure, but because constraints intentionally extend beyond
the demonstration distribution; in these regions, our planner
successfully generalizes to discover relatively feasible actions
consistent with the planning objective, though the resulting
penalty is not exactly zero. Overall, candidate diversity
improves robustness, reward planning drives semantic align-
ment, and constraints projection further guarantee feasibility;
together they provide complementary benefits and confirm the
design principles of Diffusion-MPC.

2) Interactive Learning Experiments: We compare a plan-
ner initialized on offline data and subsequently finetuned
via interactive training against a baseline initialized on the
same offline data without finetuning. Each configuration is
evaluated in 1000 parallel environments for 1000 steps, and
we report success rate and mean velocity deviation. As shown
in Table III, finetuning improves stability and velocity-tracking
accuracy, with the largest gains at high commanded speeds.

B. Real-world Experiments
1) Adaptation Tasks: Adaptation capability is evaluated

across four representative tasks: energy saving, joint position
regulation, height variation, and dynamic balancing.

Fig. 2: Left: Calf position under different planned joint targets. Right:
SoC during the long-distance real-world evaluation.

For energy saving task, we record the state of charge (SoC)
of the robot every 10 meters. We initiate the robot to 50%
SoC, and command the robot to walk with 0.6 m/s. As shown
in Fig.2, the overall energy saving is 20% with energy saving
reward compared to no planning. The energy saving oriented
agent demonstrate a smoother action pattern and decrease the
foot lifting height to avoid unnecessary energy consumption
that doesn’t contribute to the actual movement.

Fig. 3: Comparison of behavior patterns with different joint position
targets. From left to right: negative calf target, original planner, and
positive calf target.

For joint position adaptation, two distinct reference joint
poses are provided for the robot to track, which differ from the
patterns of the source RL policy. The negative setting enforces
a relatively small calf angle (close to extension), while the
positive setting requires a larger angle (more flexed). Figure 2
shows the resulting rear-left calf trajectories. Under the positive
target, the calf maintains a higher average position with large
oscillations, indicating active participation in locomotion. In
contrast, under the negative target the calf remains closer

Fig. 4: Height transition experiment.

to extension with small oscillations, contributing less to
propulsion. Figure 3 further illustrates the resulting strategies:
the negative target induces an upward tilt with propulsion
dominated by the front legs, while the positive target shifts
the robot forward, with larger calf–thigh angles and the front
calves primarily used for balance.

For height variation, a neural-network-based height reward
model directs the robot from a relatively elevated base position
to a lower one. As shown in Fig. 4, the robot transitions
from an initial height of 25 cm to a reduced height of 18 cm
under reward planning. It is important to note that while the
pretraining dataset includes demonstrations at both heights, it
does not contain any demonstrations of transitions between
them; the observed adaptation is therefore entirely achieved
through test-time planning.

Fig. 5: Balancing under external disturbance. The robot is
subjected to a lateral push at the trunk and subsequently recovers
from the perturbed posture, reestablishing balance.

Easy Medium Hard

No Plan 0.9 0.8 0.6
Plan 1.0 1.0 0.9

TABLE IV: Balancing success rate under different pendulum angles.

For balancing, a pendulum apparatus is employed to gen-
erate controlled lateral impacts, similar to [54]. As shown in
Fig. 5, a 3.8 kg weight suspended from a 1.2 m pivot swings
to strike the robot’s trunk at its lowest point, producing impact
velocities of 4.54 m/s (90° release) and 3.21 m/s (60° release),
corresponding to two difficulty levels. A trial is considered a
failure if the robot falls or remains stuck below 0.2 m/s for more
than 2 s. As summarized in Table IV, incorporating balancing
rewards and constraint planning markedly improves the ability
to withstand external disturbances and aids recovery.

2) Locomotion Performance: Diffusion-MPC is evaluated
on challenging real-world terrains, including soft uneven
grass with varying friction and a grass slope with varying
inclination, as shown in Fig. 6. The planner is deployed in
a zero-shot manner without environment-specific retraining.
A neural-network-based foot-lifting reward model encourages
stable stepping on uneven surfaces, while a balancing reward
enhances stability during traversal. For slope locomotion, reg-
ularization on the rear-calf joint position is applied adaptively:
larger angles are favored for ascending slopes to prevent
backward slipping, whereas smaller angles are encouraged for
descending slopes to maintain forward stability. These results
highlight that diffusion-based planning enables deployment in

Fig. 6: Zero-shot walking. Left: grass. Right: grassy slope.

the wild, providing both adaptability to diverse terrains and
flexible behavior modulation at test time.

3) Interactive Learning Experiments: As shown in Fig. 7,
both the planner trained on datasets without domain random-
ization and its finetuned counterpart are evaluated in real-
world experiments. As shown in Table V, the robot is tested
at different target speeds over a 10 m trajectory, and success
rates are reported. The finetuned policy exhibits substantial
gains over the untuned version. By contrast, the untuned policy
performs even worse than in simulation, likely due to the replan
margin during deployment, which reduces responsiveness. In
addition, Fig. 8 presents real-world deployment of a planner
trained entirely from scratch, demonstrating that diffusion-
based planning can be learned effectively without reliance on
demonstration data.

Goal (Task) Finetuned Not Tuned

0.5 m/s 1.0 0.2
0.7 m/s 1.0 0.1
1.0 m/s 1.0 0.0

TABLE V: Effectiveness of Finetuning. Success rates (percentage of
successful runs) are reported at different commanded forward speeds.

Fig. 7: Comparison of finetuned and untuned diffusion planners in
real-world deployment. The finetuned planner (top) achieves stable
locomotion, while the untuned baseline (bottom) fails to deploy.

Fig. 8: Interactive diffusion planner learned from scratch deployed
into real world

4) Deployment Ablation: We conduct and ablation study
on how the choice of replan margin 𝐷, caching steps
𝑚, and cache reset influence frequency, latency, and real-
world locomotion performance. Performance is assessed along
three criteria: forward, turning, and backward locomotion.
Since aggressive caching may affect the transition between
locomotion patterns, sequential omni-directional movement
is specifically tested. The robot is initialized in a standing
position, then commanded to move forward at 𝑉𝑥 = 0.8 m/s
for 3 s, followed by combined motion at 𝑉𝑥 = 0.5 m/s and
𝑉yaw = 1.0 m/s, and finally commanded to walk backward
at 𝑉𝑥 = −0.8 m/s. Latency is recorded once the computation

reaches steady state, excluding rare deviations caused by resets.
Results in Table VI show that DDIM degrades motion quality
compared to cached diffusion steps, and that cache resetting
is crucial for robust omni-directional transitions. With these
designs, diffusion planning achieves real-time operation in
onboard computer while preserving motion quality.

Metrics A B C D E

Frequency 33.1 45.8 47.7 50.1 50.0
Latency 198 77 78 22 21
Forward ✗ ✗ ✗ ✓ ✓

Turning ✗ ✗ ✗ ✓ ✓

Backward ✗ ✗ ✗ ✗ ✓

NOTE: A: 𝐷=0, 𝑚=0; B: 𝐷=0, 𝑚=7, no refresh; C: DDIM (3 steps); D:
𝐷=3, 𝑚=7, no refresh; E: 𝐷=3, 𝑚=7, refresh.

TABLE VI: Deployment Ablation. Impact of replan margin 𝐷,
caching steps𝑚, and cache refresh. We report frequency (hz), latency
(ms), and real-world locomotion performance across configurations.

VII. CONCLUSION

We present Diffusion-MPC, a planning framework that
leverages diffusion models as expressive generative priors over
state–action trajectories, synthesizing generalized behaviors
driven by a broad range of rewards and constraints. Diffusion-
MPC supports novel reward functions and constraints at
test time, allowing flexible adaptation to new tasks and
environments. Our approach leverages the dataset to capture
and compose existing behaviors into novel ones, and fur-
ther employs an online finetuning mechanism that actively
explores the task space to recover behaviors absent from
demonstrations, enhancing overall performance. Diffusion-
MPC runs in real time via asynchronous planning and early-
step caching, and exhibits flexible behavior adaptation. Our
work positions diffusion-based generative priors as a practical
path to adaptable, general-purpose embodied control.

Future directions include extending the framework to inte-
grate diverse inputs—such as LiDAR, visual perception, and
natural language—advancing toward embodied agents capable
of fully autonomous real-world interaction and planning.
Our present study considers only simple constraint classes;
extending the approach to richer, task-dependent (and po-
tentially nonconvex or time-varying) constraints is a natural
next step. Another key direction is to develop interactive
finetuning methods that can train competitive planners without
relying on offline data, thereby removing the need for expert
demonstrations while preserving sample efficiency.

References

[1] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor adaptation
for legged robots,” arXiv preprint arXiv:2107.04034, 2021. 1, 2

[2] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics,
vol. 5, no. 47, p. eabc5986, 2020. 1

[3] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot control
for generalization with multiplicity of behavior,” in Conference on Robot
Learning. PMLR, 2023, pp. 22–31. 1, 2

[4] B. Ai, L. Dai, N. Bohlinger, D. Li, T. Mu, Z. Wu, K. Fay, H. I.
Christensen, J. Peters, and H. Su, “Towards embodiment scaling laws in
robot locomotion,” arXiv preprint arXiv:2505.05753, 2025. 1

[5] T. Zhang, B. Zheng, R. Nai, Y. Hu, Y.-J. Wang, G. Chen, F. Lin,
J. Li, C. Hong, K. Sreenath, et al., “Hub: Learning extreme humanoid
balance,” arXiv preprint arXiv:2505.07294, 2025. 1, 2

[6] R. Nai, J. You, L. Cao, H. Cui, S. Zhang, H. Xu, and Y. Gao, “Fine-tuning
hard-to-simulate objectives for quadruped locomotion: A case study on
total power saving,” arXiv preprint arXiv:2502.10956, 2025. 1

[7] M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Planning with
diffusion for flexible behavior synthesis,” in Proceedings of the 39th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. 162. PMLR, 17–23 Jul 2022, pp.
9902–9915. 1, 2, 3

[8] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, 2017. 1, 3

[9] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim,
“Mit cheetah 3: Design and control of a robust, dynamic quadruped
robot,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 2245–2252. 1, 2

[10] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model
predictive control through contacts for quadrupeds,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1458–1465, 2018. 1, 2

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proxi-
mal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017. 1, 2

[12] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. Pmlr, 2018,
pp. 1861–1870. 1, 2

[13] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and
H. Zhao, “Robot parkour learning,” arXiv preprint arXiv:2309.05665,
2023. 1, 2

[14] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Advances in neural information processing systems, vol. 33, pp. 6840–
6851, 2020. 1, 2, 3

[15] Y. Song and S. Ermon, “Generative modeling by estimating gradients
of the data distribution,” Advances in neural information processing
systems, vol. 32, 2019. 1

[16] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”
arXiv preprint arXiv:2010.02502, 2020. 1, 2

[17] Z. Cao and D. Sadigh, “Learning from imperfect demonstrations from
agents with varying dynamics,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5231–5238, 2021. 2

[18] X. Huang, Y. Chi, et al., “Diffuseloco: Real-time legged locomotion
control with diffusion from offline datasets,” in 8th Annual Conference
on Robot Learning, 2024. 2

[19] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted
regression for operational space control,” in Proceedings of the 24th
international conference on Machine learning, 2007, pp. 745–750. 2

[20] B. Kang, X. Ma, C. Du, T. Pang, and S. Yan, “Efficient diffusion policies
for offline reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 36, pp. 67 195–67 212, 2023. 2

[21] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning,”
arXiv preprint arXiv:1910.00177, 2019. 2

[22] A. Z. Ren, J. Lidard, L. L. Ankile, A. Simeonov, P. Agrawal,
A. Majumdar, B. Burchfiel, H. Dai, and M. Simchowitz, “Diffusion
policy policy optimization,” arXiv preprint arXiv:2409.00588, 2024. 2

[23] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym: High
performance gpu-based physics simulation for robot learning,” arXiv
preprint arXiv:2108.10470, 2021. 2, 5

[24] J. Gu, F. Xiang, X. Li, Z. Ling, X. Liu, T. Mu, Y. Tang, S. Tao, X. Wei,
Y. Yao, et al., “Maniskill2: A unified benchmark for generalizable
manipulation skills,” arXiv preprint arXiv:2302.04659, 2023. 2

[25] S. Tao, F. Xiang, A. Shukla, Y. Qin, X. Hinrichsen, X. Yuan, C. Bao,
X. Lin, Y. Liu, T.-k. Chan, et al., “Maniskill3: Gpu parallelized robotics
simulation and rendering for generalizable embodied ai,” arXiv preprint
arXiv:2410.00425, 2024. 2

[26] J. Wu, G. Xin, C. Qi, and Y. Xue, “Learning robust and agile
legged locomotion using adversarial motion priors,” IEEE Robotics and
Automation Letters, 2023. 2

[27] S. Zhu, R. Huang, L. Mou, and H. Zhao, “Robust robot walker:
Learning agile locomotion over tiny traps,” in 2025 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2025, pp.
15 987–15 993. 2

[28] Y. Cheng, H. Liu, G. Pan, H. Liu, and L. Ye, “Quadruped robot traversing
3d complex environments with limited perception,” in 2024 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2024, pp. 9074–9081. 2

[29] J. Ren, T. Huang, H. Wang, Z. Wang, Q. Ben, J. Long, Y. Yang, J. Pang,
and P. Luo, “Vb-com: Learning vision-blind composite humanoid loco-
motion against deficient perception,” arXiv preprint arXiv:2502.14814,
2025. 2

[30] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi, “Agile but safe:
Learning collision-free high-speed legged locomotion,” arXiv preprint
arXiv:2401.17583, 2024. 2

[31] R. Huang, S. Zhu, Y. Du, and H. Zhao, “Moe-loco: Mixture of experts
for multitask locomotion,” arXiv preprint arXiv:2503.08564, 2025. 2

[32] S. Luo, S. Li, R. Yu, Z. Wang, J. Wu, and Q. Zhu, “Pie: Parkour with
implicit-explicit learning framework for legged robots,” IEEE Robotics
and Automation Letters, 2024. 2

[33] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2024, pp. 11 443–11 450. 2

[34] D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour:
Learning agile navigation for quadrupedal robots,” Science Robotics,
vol. 9, no. 88, p. eadi7566, 2024. 2

[35] C. Zhang, J. Jin, et al., “Resilient legged local navigation: Learning to
traverse with compromised perception end-to-end,” in ICRA, 2024, pp.
34–41. 2

[36] S. Zhu, L. Mou, D. Li, B. Ye, R. Huang, and H. Zhao, “Vr-robo: A real-
to-sim-to-real framework for visual robot navigation and locomotion,”
IEEE Robotics and Automation Letters, 2025. 2

[37] S. Zhu, D. Li, L. Mou, Y. Liu, N. Xu, and H. Zhao, “Saro: Space-aware
robot system for terrain crossing via vision-language model,” in 2025
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2025, pp. 14 820–14 827. 2

[38] S. Uppal, A. Agarwal, H. Xiong, K. Shaw, and D. Pathak, “Spin: Simul-
taneous perception interaction and navigation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024, pp. 18 133–18 142. 2

[39] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake,
and S. Song, “Diffusion policy: Visuomotor policy learning via
action diffusion,” The International Journal of Robotics Research, p.
02783649241273668, 2023. 2, 3

[40] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermodynamics,”
in International conference on machine learning. pmlr, 2015, pp.
2256–2265. 2, 3

[41] A. Bansal, H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum,
J. Geiping, and T. Goldstein, “Universal guidance for diffusion models,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2023, pp. 843–852. 2

[42] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine, “Train-
ing diffusion models with reinforcement learning,” arXiv preprint
arXiv:2305.13301, 2023. 2

[43] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in
Proceedings of the IEEE/CVF international conference on computer
vision, 2023, pp. 4195–4205. 2

[44] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal,
“Is conditional generative modeling all you need for decision-making?”
arXiv preprint arXiv:2211.15657, 2022. 2, 3

[45] H. Qi, H. Yin, A. Zhu, Y. Du, and H. Yang, “Strengthening generative
robot policies through predictive world modeling,” arXiv preprint
arXiv:2502.00622, 2025. 2

[46] R. Römer, A. von Rohr, and A. P. Schoellig, “Diffusion predictive control
with constraints,” arXiv preprint arXiv:2412.09342, 2024. 2

[47] B. Chen, D. Martı́ Monsó, Y. Du, M. Simchowitz, R. Tedrake,
and V. Sitzmann, “Diffusion forcing: Next-token prediction meets
full-sequence diffusion,” Advances in Neural Information Processing
Systems, vol. 37, pp. 24 081–24 125, 2024. 2

[48] Y. Luo, U. A. Mishra, Y. Du, and D. Xu, “Generative trajectory stitch-
ing through diffusion composition,” arXiv preprint arXiv:2503.05153,
2025. 2

[49] K. Karunratanakul, K. Preechakul, S. Suwajanakorn, and S. Tang,
“Guided motion diffusion for controllable human motion synthesis,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 2151–2162. 2

[50] X. Huang, T. Truong, Y. Zhang, F. Yu, J. P. Sleiman, J. Hodgins,
K. Sreenath, and F. Farshidian, “Diffuse-cloc: Guided diffusion for

physics-based character look-ahead control,” ACM Transactions on
Graphics (TOG), vol. 44, no. 4, pp. 1–12, 2025. 2

[51] Y. Luo, C. Sun, J. B. Tenenbaum, and Y. Du, “Potential based diffusion
motion planning,” arXiv preprint arXiv:2407.06169, 2024. 2

[52] R. O’Mahoney, A. L. Mitchell, W. Yu, I. Posner, and I. Havoutis, “Offline
adaptation of quadruped locomotion using diffusion models,” in 2025
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2025, pp. 9974–9980. 2

[53] G. Zhou, S. Swaminathan, R. V. Raju, J. S. Guntupalli, W. Lehrach,
J. Ortiz, A. Dedieu, M. Lazaro-Gredilla, and K. P. Murphy, “Diffusion
model predictive control,” Trans. on Mach. Learning Research, 2025.
2, 3

[54] Z. Xiao, X. Zhang, X. Zhou, and Q. Zhang, “Pa-loco: Learning
perturbation-adaptive locomotion for quadruped robots,” in 2024
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2024, pp. 9110–9115. 7

	INTRODUCTION
	RELATED WORKS
	Learning-Based Locomotion
	Diffusion for Control

	PROBLEM SETUP AND BACKGROUND
	METHOD
	Flexible Behavior Synthesis Through Sampling.
	Compositional Behavior Synthesis
	Planner Learning with Environment Interaction
	Real-time Planning

	EXPERIMENTS: DESIGN AND SETUP
	Experiment Setup
	Adaptation Task Definition
	Base Height Variation
	Joint Limit Restriction
	Energy Saving
	Joint Acceleration / Velocity Regularization
	Balancing

	Learning the Planner

	EXPERIMENTS: RESULTS
	Simulation Experiments
	Adaptation Tasks
	Interactive Learning Experiments

	Real-world Experiments
	Adaptation Tasks
	Locomotion Performance
	Interactive Learning Experiments
	Deployment Ablation

	CONCLUSION
	References

